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Complex clustered networks are ubiquitous in natural and technological systems. Understanding the physics
of the security of such networks in response to attacks is of significant value. We develop a model, based on
physical analysis and numerical computations, for the key ingredients of load dynamics in typical clustered
networks. With this understanding, an effective strategy is proposed for preventing cascading breakdown, one
of the most disastrous events that can happen to a complex networked system.
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Recently, cascading breakdown �1–3� in complex net-
works has received considerable attention �4–7�. The phe-
nomenon is referred to as an avalanching type of process,
where the failure of a single or of a few nodes can result in a
large-scale breakdown of the network. In particular, in a
physical network nodes carry and process certain loads, such
as electrical power, and their load-bearing capacities are fi-
nite. When a node fails, the load that it carries will be redis-
tributed to other nodes, potentially triggering more failures in
the network as a result of overloading. This process can
propagate through the entire network, leading to its break-
down. Indeed, cascading breakdown appears to be particu-
larly relevant for large-scale failures of electrical power
grids, and efforts have been made to understand the dynami-
cal origin of such failures �8�. From the standpoint of net-
work security, scale-free networks �9�, where a small subset
of nodes �hubs� possess substantially more links than those
of an average node and therefore carry disproportionally
more loads, are especially vulnerable to cascading break-
down, as attack on one of the hub nodes can cause a signifi-
cant load redistribution �2,5�. In this regard, a strategy for
protecting scale-free networks against cascading breakdown
has been proposed �6�, where a selective set of “unimpor-
tant” nodes that process little but contribute relatively large
loads to the network are pre-emptively removed so as to
reduce the overall load in the network.

Networks with a community structure, or clustered net-
works, are relevant to a plethora of biological, social, and
technological systems �10�. A clustered network consists of a
number of groups, where nodes within each group are
densely connected but the linkage among the groups is
sparse. A clustered network can be heterogeneous in the
sense that its degrees obey a power-law distribution, which
can be realized, for example, by incorporating the scale-free
topology in each cluster. Recently various dynamics on com-
plex clustered networks have been studied �11�.

In this paper, we address the dynamical origin of cascad-
ing processes on complex clustered networks and, more im-
portantly, investigate how such a network can be made se-
cure in response to attacks. In view of the particular
vulnerability of scale-free networks to cascading breakdown,
we focus on networks where each individual cluster contains
a scale-free subnetwork. To motivate our work and illustrate
the challenges, we consider the problem of virus spread start-
ing from one of the clusters, such as a remote village in a

human epidemic network. A common practice to prevent a
global spread is to isolate this particular cluster from the
network. Now, consider the network-security problem by as-
suming that an attack has occurred in one of the clusters. A
naive strategy to prevent breakdown of the network on a
global scale is to isolate this cluster by cutting all the links
that connect this cluster with other clusters so that failures
would be restricted to the original cluster. This intuitive
thinking, however, cannot be correct for a load-distributed
network, because cutting off a cluster would transfer the load
originally processed by this cluster to other clusters of the
network, increasing the likelihood of overloading and possi-
bly resulting in a more disastrous situation. Indeed, this is
what we have found in simulations: a clustered network is
particularly vulnerable to cascading breakdown in the sense
that the general prevention strategy in Ref. �6�, which is
quite effective for scale-free networks, would increase sig-
nificantly the probability of a global avalanche if not prop-
erly implemented.

Our main idea is to classify and understand the roles
played by various nodes in the network and devise a control
strategy accordingly that can effectively prevent global cas-
cades. Our achievement is illustrated in Fig. 1, plots of the
relative size G of the largest connected component of the
network versus some generic network capacity parameter �
in response to an attack on a hub node, where G=1 repre-
sents a fully connected network and G�1 indicates that the
network has been disintegrated effectively. The data points
represented by open squares correspond to the situation
where no control is taken to protect the network, and those
represented by open circles are the result of cutting off the
particular cluster within which the attack occurs. We observe
that, as the capacity parameter � is reduced, G decreases
rapidly but strikingly, there is essentially no difference in the
values of G between these two cases, indicating the ineffec-
tiveness of an straightforward implementation of the preven-
tion strategy which tries to localize the destruction within
one community. In contrast, implementing our control strat-
egy results in much higher values of G �data points repre-
sented by open triangles�. In what follows, we present a se-
quence of reasonings, supported by numerical computations,
that lead to a relatively complete understanding of the cas-
cading phenomenon in complex clustered networks and, con-
sequently, to an effective control strategy.
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We consider an ensemble of clustered networks, each of N
nodes and M clusters, where N�M. Any cluster within the
network is a scale-free subnetwork of n=N /M �1 nodes �9�.
The number of intercluster links is kMM, and they are placed
randomly among the clusters. To conserve the average de-
gree of the entire network, we cut off kMM intracluster links
randomly while keeping the network fully connected. Since
the number of intercluster links is much smaller than that of
intracluster links, removing a small number of intracluster
links has little effect on the dynamics of the network. To
investigate cascading breakdown, we use the prototypical
model of load dynamics �2�. In particular, the load Li at node
i is defined as the total number of directed shortest paths
passing through this node. Paths that end at or start from the
node are also counted. The total load of the network is given
by S=�Li=N�N−1��D+1�, where D is the average network
distance. The capacity of a node is the maximum load that
the node can handle, which is assumed to be proportional to
its initial load Li0: Ci=�Li0, where the constant ��1 is a
uniform capacity parameter. An attack at a particular node is
defined as an event that disables or removes this node from
the network. If the load that this node handles is relatively
large, a load redistribution over the network can occur. Any
node in the network is considered to have failed and is re-
moved from the network if the load imposed on it is larger
than its capacity. The damage after the network reaches a
new steady state can be conveniently quantified by the rela-
tive size G=N� /N, where N� is the number of nodes in the
largest connected component remaining after the attack. For
G�1, the network remains mostly connected, so the effect
of attack on the network is not severe. For G�0, breakdown
of the network occurs at a global scale.

To understand the dynamical origin of cascading failures
in a clustered network, we note that nodes connecting differ-
ent clusters, or bridge nodes, transmit intercluster load flows
and they are critical to maintaining the global connections of
the network. For the ensemble of networks used in Fig. 1, we
find that the fraction of the bridge nodes is about 3.5%, but
they carry about 41% of the total load of the network. An
intuition is, then, that assigning relatively large capacities to
the bridge nodes may mitigate cascades. To test this hypoth-
esis, we conduct the following numerical experiments. First,
we randomly select a set of nodes, which has the same num-
ber as that of the bridge nodes, and assign them with differ-
ent capacities as characterized by the parameter �� �the re-
maining nodes in the network have the capacity parameter
��. We then examine, in the two-dimensional parameter
plane �� ,���, contours of various values of G. The result is
shown in Fig. 2�a�, where the contours are mostly vertical,
indicating little dependence of G on ��. Thus, having a ran-
dom set of nodes with high capacities cannot help prevent
cascading failures, as expected. Next, we assign �� but only
to the set of bridge nodes. As shown in Fig. 2�b�, in this case,
the contour lines are approximately symmetric with respect
to ��=�, indicating that G depends mainly on �� but only in
the region where ����. For ��	�, G has little dependence
on ��, revealing the ineffectiveness of having high-capacity
bridge nodes in limiting cascading failures. There is in fact a
bottleneck effect at the bridge nodes: if their capacities are
small, they will hinder the load-transferring capability of the
network, but increasing their capacities in general can only
facilitate load transfers among the clusters via intercluster
links. Since the majority of links in the network are intrac-
luster links, load transfers within individual clusters are
prevalent. As a result, having large-capacity bridge nodes
cannot enhance the network’s load-transferring ability in
general.

The results in Figs. 2�a� and 2�b� suggest the need to
identify a different set of nodes that are more important to
the load dynamics than the bridge nodes. Our key idea is to
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FIG. 1. �Color online� For a representative clustered network of
N=5600 nodes, average degree �k�=4, M =50 clusters, and average
number of intercluster links kM =2, the relative size G of the largest
connected component in the network versus the network capacity
parameter � in response to a targeted attack. Each data point is the
result of averaging 100 network realizations �see text for details of
the meanings of the three different data curves�. The attack disables
a single node that has the largest load. For a nonclustered scale-free
network, the value of G can be about zero for ��1 �2�. However,
for a clustered network, failures propagate from one cluster to an-
other, during which a few connected clusters may be separated from
the rest but still remain connected. As a result, the value of G for
small values of � is small but not zero; it is of the order of 1 /M.
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FIG. 2. �Color online� Contour plots of G versus � and ��. The
dotted lines in �c� correspond to effective total capacity parameter
of 1.2, 1.4, and 1.6 �from left to right�. Network and simulation
parameters are the same as for Fig. 1.
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examine, within any given cluster, the set of nodes that are
on the shortest paths connecting the bridge nodes. We call
such nodes skeleton nodes, as the shortest paths through
them are the main avenues for load transfers within the clus-
ter. The bridge and the skeleton nodes thus form the back-
bone of load traffic on the network. Indeed, for the model
network in Fig. 1, the fraction of these two types of back-
bone nodes is 13% but they carry 79% of the total load. A
typical scenario for traffic flow on the network is then as
follows. Say node A in one cluster wishes to transfer a cer-
tain amount of load to node B in a different cluster. Node A
first sends the load to a closest skeleton node in the same
cluster, which will then be sent to a bridge node along the
shortest path. Such shortest paths can be regarded as “high-
ways” for load traffic. The load is then transported to the
destination cluster along a series of “highways” connecting
various backbone nodes. Upon arrival at the destination clus-
ter, the load is finally sent to node B via some “local” con-
nections in that cluster. This picture is analogous to the sur-
face transportation system in a modern infrastructure. We
may expect that increasing the capacities of the backbone
nodes can reduce the likelihood of overloading in the net-
work, thereby making the network more tolerant to cascad-
ing breakdown. Figure 2�c� shows the contours of a number
of values of G in the �� ,��� plane, where �� now is the
capacity parameter for both types of backbone nodes. In-
deed, for a fixed value of �, as �� is increased, G can be
increased significantly. Setting a high value of �� is practical,
as the number of backbone nodes is small �typically about
10% of the total number of nodes in the network�. To give a
concrete example, assume first all nodes have the same ca-
pacity: ��=�=1.4. After the attack, G is about 0.3, indicating
that only 30% of the nodes are still connected. However, if
we set ��=2.3 and �=1.3 so that the total capacity of the
network is the same as for the case of ��=�=1.4, we find
that G can be maintained at about 0.9, a three-fold increase
over the previous case.

The above analysis suggests an effective way to imple-
ment the strategy of removing “unimportant” nodes in the
network to prevent cascading breakdown �6�, i.e., to remove
a certain fraction of nonessential nodes that are neither skel-
eton nor bridge nodes. These nonessential nodes contribute
loads to the network but they process or transfer little loads,
so a controlled removal can reduce the total load while keep-
ing intact the overall traffic flow of the network. A key issue
is the optimal fraction of the nonessential nodes that should
be removed to maximize the network’s robustness against
cascading breakdown. In the following, we develop a physi-
cal analysis and numerical computations to address this is-
sue.

We order the clusters by their average distances to the
cluster under attack. In particular, we denote the cluster
where a cascading process is originated as IM =1 and calcu-
late the average distances between nodes in this cluster and
nodes in other clusters: l1J=1 /n2�dij, J=2,3 , . . ., M, where
the sum is over all nodes i in cluster 1 and all nodes j in
cluster J. The average distances l1J are arranged in an as-
cending order, i.e., the cluster that has the smallest distance
l1J is denoted by IM =2, and so on. The order thus character-
izes the closeness of an arbitrary cluster to the cluster under

attack. We find that removing nonessential nodes from clus-
ters that are close to the original cluster can lead to higher
values of G, as shown in Fig. 3�a�. This can be understood as
follows. By removing some nonessential nodes in a cluster,
the load decrease in the skeleton and bridge nodes in this
cluster is nn�N−n�d, where nn	n is the number of nones-
sential nodes, and d is the average path length for load at a
nonessential node to travel through the backbone nodes in
this cluster. The load decrease over all backbone nodes is
approximately n�N−n��D−d�. Because of the clustered to-
pology of the network, D is much larger than d. For example,
for the parameters used in Fig. 2, D�14 and d�2. The
average load decrease associated with the backbone nodes in
each cluster is then n�N−n��D−d� / �M −1�, which is much
less than the load decrease in the original cluster. In general,
the closer a cluster is to the original cluster, the more load
decrease occurs. Thus, to significantly increase the network’s
ability to resist cascading breakdown while at the same time
to minimize its impact on the network, nonessential nodes in
clusters that are closer to the original cluster should be tar-
geted for removal. Figure 3�b� shows this effect by compar-
ing the consequence of removing nonessential nodes from
randomly selected clusters and from clusters that are more
distant from the original cluster. We see that removing non-
essential nodes from close clusters results in about 20% of
improvement in G as compared with node removal from ran-
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FIG. 3. �Color online� For �=1, �a� G versus the index IM of the
cluster from which nonessential nodes are removed. �b� G versus
the number of clusters Mr where controlled removal occurs.
Circles: from clusters with small index to large index; squares: from
randomly selected clusters; triangles: from clusters with large index
to small index.
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domly chosen clusters, and the improvement is about 50%
when comparing with removal from some more distant clus-
ters.

For controlled node removal from some randomly chosen
clusters, the optimal removing size MRC that maximizes G
can be estimated, as follows. Before removal, the total load
is S=N�N−1��D+1�. After removing int�fN� nonessential
nodes, the total load becomes S�=N��N�−1��D�+1�, where
N�=int��1− f�N� and D� is the new network distance. Since
the backbone nodes play a dominant role in load processing,
D�
D and S� /S
�1− f�2. That is, the load of an average
backbone node i decreases by a factor of �1− f�2 as the result
of controlled removal. After the attack, the load of node i
will in general increase from Li to Li�=
Li, where 
 is a
constant depending on the network structures. The new load
can thus be written as �1− f�2
Li. If the capacity �Li of node
i is larger than the new load, i.e., �Li	 �1− f�2
Li, cascading
failures will not occur. In this sense, the quantity 
 charac-
terizes the network’s ability to resist cascading breakdown.

Generally, the value of the parameter 
 depends on nodes,
thus it is more accurate to write Li�=
iLi. Most of the nodes
in the network have 
 values close to 1, with a small set of
nodes having larger 
 values. The probability distribution of

i−1 is shown in Fig. 4. We observe that for scale-free net-
works without clustered structure, the distribution decays ex-
ponentially for large 
i �inset of Fig. 4�. This is consistent
with previous results that for networks without a clustered
structure, 
−1
0 �5�. However, for a clustered network, the
distribution of 
i has a long tail compared with exponential
decay, indicating large load fluctuations after the initial at-
tack. Heuristically, this could be understood, as follows. A
single network is compact and its structure is homogeneous,
i.e., removing some nodes results in a smaller network but

with similar properties. For example, for a scale-free network
the load Li and the degree ki satisfy the scaling relation Li
	ki

�, where �
1.5. After removing a few nodes, it is still a
scale-free network, thus the relation Li�	ki�

� still holds,
where prime means the corresponding network quantities af-
ter the removal. Since the number of nodes removed is small,
one expects the change in the degree to be small as well, thus
ki�
ki, and Li�
Li �5�. However, for a clustered network,
although the averaged load L�k� over the nodes with the
same degree k scales as L	k� �Fig. 5�b��, the relation does
not hold for individual nodes �Fig. 5�a��, contrasting with
that of scale-free networks �Fig. 5�c��. Indeed, the load for
such a network is determined by the type of the nodes. Gen-
erally, the bridge nodes have the largest loads, followed by
the skeleton nodes, and then by the nonessential nodes. Since
the links between clusters are established among randomly
selected nodes, the backbone nodes can have both large and
small degrees �Fig. 5�a��. Furthermore, when the network is
attacked, the backbone structure is altered. On one hand,
some new nodes may become backbone nodes, and their
loads will increase drastically. For example, for the case
where backbone nodes �13% of all nodes� carry 79% of the
total load S, the average load carried by them is about 6S /N,
while the nonessential nodes carry an average load of
0.2S /N. Thus, when a nonessential node becomes a back-
bone node, the ratio 
 is of the order of 30, and due to
heterogeneity of the nodes �each cluster is a scale-free net-
work�, the ratio can be as high as several hundred. On the
other hand, the load flow in the backbone may be redistrib-
uted after the attack, leading to huge load changes as well.
This accounts for the long tail in the distribution of the
shifted ratio 
−1. Although the ratio for a single node can be
as high as several hundred, the number of such nodes can be
several orders of magnitude smaller, as indicated by Fig. 4.
We find, numerically, the effective value of 

2 for a clus-
tered network.
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FIG. 4. �Color online� The distribution of the shifted load ratio

i−1. For clustered networks, the distribution has a long tail and is
independent to network details such as the number of clusters and
network size, indicating the existence of large load fluctuations be-
fore and after attack. The straight line has a slope of −2.1. Inset: the
same quantity for a single scale-free network �by setting M =1�.
N=5600, �k�=4,6 ,8 ,10 from right to left. The distribution for the
shifted ratio is exponential. Each data is the result of averaging at
least 100 random realizations.

FIG. 5. �Color online� Load versus degree for clustered net-
works with M =35, N=44800 �a�, �b�, and for scale-free networks
with N=5600, �k�=4 �c�, �d�. �a�, �c� Scattered plots for all �ki ,Li�
pairs. �b�, �d� The averaged load L over all the nodes with the same
degree versus node degree k. The straight line has a slop of 1.5. The
data are obtained from more than 100 random realizations.
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Thus, for a given value of �, the optimal fraction of
controlledly removed nodes is fc=1−�� /
. Noting
that f can be written as f =�Mr /M, where � is the fraction of
nonessential nodes, we have MRC=Mfc /�. Since MRC, the
optimal number of clusters where controlled removal occurs,
assumes approximately the same value for different ways of
selecting the clusters �Fig. 3�b��, our estimate for MRC should
practically hold for all three cases and it can thus be consid-
ered as a general theoretical prediction. For parameters used
in Fig. 6�a�, we have �=0.87. The predicted MRC values are
indicated by arrows in the figure for several � values. They
agree with the simulation results reasonably well.

We now summarize the steps of executing our strategy for
preventing cascading breakdown in a complex clustered net-
work. Assume that the network parameters �, 
, and � are
available �either they are preassigned or they can be calcu-
lated when the network structure is known� and the backbone
nodes in various clusters have been identified. The immedi-
ate response to an attack on some hub nodes in a particular
cluster should be to calculate the distances between all other
clusters to this cluster and assign indices IM to these clusters.
The critical cluster index MRC=int�M�1−�� /
� /�� is then
calculated. Nonessential nodes in clusters whose indices sat-
isfy IM MRC are removed. Cascading breakdown can then
be avoided, where the resultant maximum value of G is
given by Gmax=1− fc=�� /
. Numerical verification of our
strategy is shown in Fig. 6�b�, where the value of G versus �
is displayed. The result of executing our optimal strategy of
controlled node removal is represented by the solid curve,
while the dashed curve is predicted by the above physical
analysis. We observe that, even when the node capacity pa-
rameter assumes the minimum value �=1, our method can
result in a connected component that contains more than
60% of the original nodes after an attack. In this sense, cas-
cading breakdown has been effectively prevented. We em-
phasize that, given the structure of the network to be pro-
tected, the required computations in response to an attack
can be done extremely efficiently, and the results of which
can then be used for quick, controlled node removal so as to
prevent possible cascading breakdown.
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FIG. 6. �Color online� �a� G versus Mr for �=1.1 �circles�, 1.2
�upward triangles�, 1.3 �downward triangles�, and 1.4 �diamonds�.
The arrows indicate the predicted value of MRC. �b� G versus � for
our strategy. The dashed line represents our theoretical prediction.
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